ГГГ PG DEPARTMENT OF ECONOMICS
LEARNING RESOURCES
RULES OF DIFFERENTIATION
егггггггггггггггггггггггггггггггггггггггГ Measuring change in a linear function:

$$
y=a+b x
$$

a = intercept

> Rules for Differentiation (section 4.3)

1. The Constant Rule

If $\mathrm{y}=\mathrm{c}$ where c is a constant,

$$
\frac{d y}{d x}=0
$$

e.g. $y=10 \quad$ then $\frac{d y}{d x}=0$
EГГГГГГГГГГГГГГГГГГГГГГГГГГГГ
If $y=a x^{n}, \quad$ where a and n are constants $\frac{d y}{d x}=n \cdot a \cdot x^{n-1}$
i) $y=4 x \Rightarrow \frac{d y}{d x}=4 x^{0}=4$
ii) $y=4 x^{2} \Rightarrow \frac{d y}{d x}=8 x$
iii) $y=4 x^{-2}=>\frac{d y}{d x}=-8 x^{-3}$

$$
\begin{aligned}
& \text { If } \mathrm{y}=u \cdot v \quad \frac{d y}{d x}=u \frac{d v}{d x}+v \frac{d u}{d x} \\
& \text { i) } \mathrm{y}=(\mathrm{x}+2)(\mathrm{ax}+\mathrm{bx}) \\
& \frac{d y}{d x}=(x+2)(2 a x+b)+\left(a x^{2}+b x\right)
\end{aligned}
$$

$$
\text { ii) } y=\left(4 x^{3}-3 x+2\right)\left(2 x^{2}+4 x\right)
$$

$$
\frac{d y}{d x}=\left(4 x^{3}-3 x+2\right)(4 x+4)+\left(2 x^{2}+4 x\right)\left(12 x^{2}-3\right)
$$

F. If $y=u / v$ where u and v are functions of $x(u$ $=f(x)$ and $v=g(x)$) Then

Example 1
$y=\frac{(x+2)}{(x+4)}$
E
$\frac{d y}{d x}=\frac{(x+4)(1)-(x+2)(1)}{(x+4)^{2}}=\frac{-2}{(x+4)^{2}}$
(Implicit Function Rule)
E. If y is a function of v, and v is a function of x, then y is a function of x and

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d y}{d v} \cdot \frac{d v}{d x} \\
& y=f(x) \\
& y=f I \quad \text { where } I=f[x]
\end{aligned}
$$

7. Differentiation of Power on expressions in Brackets

$$
\begin{array}{l|l}
y=\left(5 x^{2}+6 x\right)^{3 / 2} & \frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x} \\
\text { Let } y=(u)^{3 / 2} & \frac{d y}{d x}=\frac{d}{d u}(u)^{3 / 2} \cdot \frac{d}{d x}\left(5 x^{2}+6\right. \\
v=5 x^{2}+b x & =\frac{3}{2} u^{\frac{3}{2}-1}=10 x+6 \\
\text { by opting chain rule } \\
=\frac{3}{2} u^{\frac{1}{2}} \cdot 10 x+6 \\
\text { sub.u } u=5 x^{2}+b x
\end{array}
$$

8. Differentiation of Root of Expression

$$
\pm f \quad y=\sqrt{5 x^{3}-3} \quad \text { find } \frac{d y}{d x}
$$

by appling chain rule

$$
\begin{aligned}
y & =\sqrt{u}=u^{1 / 2} \\
u & =5 x^{3}-3 \\
\frac{d y}{d x} & =\frac{d y}{d u} \cdot \frac{d u}{d x} \\
& =\frac{d}{d x}\left(u^{\frac{1}{2}}\right) \cdot \frac{d}{d x}\left(5 x^{3}-3\right)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \text { i) } \quad \mathrm{x}=3 \mathrm{y}^{2} \text { then } \\
& \frac{d x}{d y}=6 y \quad \text { so } \frac{d y}{d x}=\frac{1}{6 y}
\end{aligned}
$$

$$
\text { ii) } y=4 x^{3} \text { then }
$$

$$
\frac{d y}{d x}=12 x^{2} \quad \text { so } \frac{d x}{d y}=\frac{1}{12 x^{2}}
$$

7. Differentiation of Power on expressions in Brackets

$$
\begin{array}{l|l}
y=\left(5 x^{2}+6 x\right)^{3 / 2} & \frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x} \\
\text { Let } y=(u)^{3 / 2} & \frac{d y}{d x}=\frac{d}{d u}(u)^{3 / 2} \cdot \frac{d}{d x}\left(5 x^{2}+6\right. \\
v=5 x^{2}+b x & =\frac{3}{2} u^{\frac{3}{2}-1}=10 x+6 \\
\text { by opting chain rule } \\
=\frac{3}{2} u^{\frac{1}{2}} \cdot 10 x+6 \\
\text { sub.u } u=5 x^{2}+b x
\end{array}
$$

 Application I

- Total Costs = TC = FC + VC
- Total Revenue $=T R=P$ * Q
- $\pi=$ Profit $=$ TR - TC
- Break even: $\pi=0$, or TR $=$ TC
- Profit Maximisation: MR = MC
 (Revenue, Costs and Profit)

Example 1

A firm faces the demand curve $\mathrm{P}=17-3 \mathrm{Q}$
Solution:
(i) Find an expression for TR in terms of Q

$$
T R=P . Q=17 Q-3 Q^{2}
$$

(ii) Find an expression for MR in terms of Q

Example 2

A firms total cost curve is given by

$$
T C=Q 3-4 Q^{2}+12 Q
$$

(i) Find an expression for $A C$ in terms of Q
(ii) Find an expression for $M C$ in terms of Q
(iii) When does $\mathrm{AC}=\mathrm{MC}$?
(iv) When does the slope of $A C=0$?
(v) Plot MC and AC curves and comment on the economic significance of their relationship

$$
\begin{aligned}
& \text { (i) } \mathrm{TC}=\mathrm{Q}^{3}-4 \mathrm{Q}^{2}+12 \mathrm{Q} \\
& \text { Then, } \mathrm{AC}=\mathrm{TC} / \mathrm{Q}=\mathrm{Q}^{2}-4 \mathrm{Q}+12 \\
& \text { (ii) } \mathrm{MC}=\frac{d(T C)}{d Q}=3 Q^{2}-8 Q+12
\end{aligned}
$$

(iii) When does $\mathbf{A C}=\mathbf{M C}$?
$Q^{2}-4 Q+12=3 Q^{2}-8 Q+12$
$\Rightarrow Q=2$
Thus, $A C=M C$ when $Q=2$

> Solution continued....
(iv) When does the slope of $\mathrm{AC}=\mathbf{0}$? $\frac{d(A C)}{d Q}=2 Q-4=0$
$\Rightarrow Q=2$ when slope $A C=0$
(v) Economic Significance?
MC cuts AC curve at minimum point.
E9. Differentiating Exponential Functions

$$
\text { If } y=\exp (x)=e^{x}
$$

$$
\text { where } \mathrm{e}=2.71828
$$

then $\frac{d y}{d x}=e^{x}$
More generally,
If $y=A e^{\text {rx }}$
then $\frac{d y}{d x}=r A e^{r x}=r y$

$$
\begin{aligned}
& \text { 1) } \mathrm{y}=\mathrm{e}^{2 \mathrm{x}} \text { then } \frac{d y}{d x}=2 \mathrm{e}^{2 \mathrm{x}} \\
& \text { 2) } \mathrm{y}=\mathrm{e}^{-7 \mathrm{x}} \quad \text { then } \frac{d y}{d x}=-7 \mathrm{e}^{-7 \mathrm{x}}
\end{aligned}
$$

10. Differentiating Natural Logs Recall if $y=e^{x}$ then $x=\log _{e} y=\ln y$

- If $\mathrm{y}=\mathrm{e}^{\mathrm{x}} \quad$ then $\frac{d y}{d x}=e^{x}=\mathrm{y}$
- From The Inverse Function Rule
$\mathrm{y}=\mathrm{e}^{\mathrm{x}} \Rightarrow \frac{d x}{d y}=\frac{1}{y}$
- Now, if $\mathbf{y}=\mathbf{e}^{\mathbf{x}}$ this is equivalent to writing $x=\ln y$
- Thus, $\mathrm{x}=\ln \mathrm{y} \Rightarrow \frac{d x}{d y}=\frac{1}{y}$
gif $y=\ln x \Rightarrow \frac{d y}{d x}=\frac{1}{x}$
NOTE: the derivative of a natural lof function does not depend on the co-efficieft of x
Thus, if $\mathbf{y}=\ln \mathbf{m x} \Rightarrow \frac{d y}{d x}=\frac{1}{x}$

$$
\frac{d y}{d x}=0+\frac{1}{x}=\frac{1}{x}
$$

$$
\text { 1) } \mathrm{y}=\ln 5 \mathrm{x} \quad(\mathrm{x}>0) \Rightarrow \frac{d y}{d x}=\frac{1}{x}
$$

$$
\text { 2) } y=\ln \left(x^{2}+2 x+1\right)
$$

$$
\text { let } v=\left(x^{2}+2 x+1\right) \quad \text { so } y=\ln v
$$

$$
\text { Chain Rule: } \Rightarrow \frac{d y}{d x}=\frac{d y}{d v} \cdot \frac{d v}{d x}
$$

$$
\frac{d y}{d x}=\frac{1}{x^{2}+2 x+1} \cdot(2 x+2)
$$

$$
\frac{d y}{d x}=\frac{(2 x+2)}{\left(x^{2}+2 x+1\right)}
$$

ГГГГГГГГГГГГГГ
Product Rule: \Rightarrow

$$
\frac{d y}{d x}=x^{4} \frac{1}{x}+\ln x .4 x^{3}
$$

$$
=x^{3}+4 x^{3} \ln x=x^{3}(1+4 \ln x)
$$

4) $y=\ln \left(x^{3}(x+2)^{4}\right)$
Simplify first using rules of logs

$$
\begin{aligned}
& \Rightarrow y=\ln x^{3}+\ln (x+2)^{4} \\
& \Rightarrow y=3 \ln x+4 \ln (x+2) \\
& \frac{d y}{d x}=\frac{3}{x}+\frac{4}{x+2}
\end{aligned}
$$

E E- Applications II
$e_{d}=$

$$
\begin{aligned}
& \frac{\text { proportional change in demand }}{\text { proportional change in price }} \\
= & \frac{\Delta Q}{Q} / \frac{\Delta P}{P}=\frac{\Delta Q}{\Delta P} \cdot \frac{P}{Q}
\end{aligned}
$$

$$
e_{d}=\frac{d Q P}{d P} \cdot \frac{P}{Q}
$$

$$
\begin{aligned}
& e_{d} \text { is negative for a downward } s \\
& \text { curve } \\
& \text {-Inelastic demand if }\left|e_{d}\right|<1 \\
& \text {-Unit elastic demand if }\left|e_{d}\right|=1 \\
& \text {-Elastic demand if }\left|e_{d}\right|>1
\end{aligned}
$$

Example 1

$$
\begin{aligned}
& \text { Find } \mathbf{e}_{\mathrm{d}} \text { of the function } \mathrm{Q}=a \mathrm{P}^{-b} \\
& \mathbf{e}_{\mathrm{d}}=\frac{\mathbf{d Q} \mathbf{d}}{\mathbf{d P} \cdot \frac{\mathbf{Q}}{}} \begin{aligned}
\mathbf{e}_{\mathrm{d}} & =-b a P^{-b-1} \cdot \frac{P}{a P^{-b}} \\
& =\frac{-b a P^{-b}}{P} \cdot \frac{P}{a P^{-b}}=-b
\end{aligned} \\
& \mathbf{e}_{\mathrm{d}} \text { at all price levels is }-\mathrm{b}
\end{aligned}
$$

Example 2

If the (inverse) Demand equation is $\mathrm{P}=\mathbf{2 0 0}-\mathbf{4 0} \ln (\mathrm{Q}+\mathbf{1})$
Calculate the price elasticity of demand when $Q=20$

- Price elasticity of demand: $\mathbf{e}_{d}=\frac{d Q}{d P} \cdot \frac{P}{Q}<0$
- P is expressed in terms of Q,

$$
\frac{d P}{d Q}=-\frac{40}{Q+1}
$$

- Inverse rule $\Rightarrow \frac{d Q}{d P}=-\frac{Q+1}{40}$
- Hence, $\mathbf{e}_{\mathrm{d}}=-\frac{Q+1}{40} \cdot \frac{P}{Q}<0$
$-Q$ is $20 \Rightarrow e_{d}=-\frac{21}{40} \cdot \frac{78.22}{20}=-2.05$
$($ where $P=200-40 \ln (20+1)=78.22)$

ГГГГГГГГГГГГГГГГГГГГГГГГГГГГГГГГГГ
and this \equiv derivative of $\ln (y)$ with respect to x.
Solution:
$\frac{d y}{d x} \cdot \frac{1}{y}=\frac{1}{y} \cdot \alpha x^{\alpha-1}$
$=\frac{1}{y} \cdot \alpha \frac{x^{\alpha}}{x}$
$=\frac{1}{y} \cdot \alpha \cdot \frac{y}{x}$
$=\frac{\alpha}{x}$

Solution Continued...

$$
\begin{aligned}
& \text { Now } \ln y=\ln x^{\alpha} \\
& \text { Re-writing }
\end{aligned} \begin{aligned}
& \Rightarrow \ln y=\alpha \ln x \\
& \Rightarrow \frac{d(\ln y)}{d x}=\alpha \cdot \frac{1}{x}=\frac{\alpha}{x}
\end{aligned}
$$

Differentiating the $\ln \mathrm{y}$ with respect to x gives the proportional change in x.
Example 2: If Price level at time t is $\mathrm{P}(\mathrm{t})=\mathrm{a}+\mathrm{bt}+\mathrm{ct}^{2}$
Calculate the rate of inflation.

हгггггггггггггггггггггггггггггггп
Condition For Maxima Or
E) $\frac{d y}{d x}=f^{\prime} x=0$
E) $\frac{d^{2} y}{d x^{2}}=f^{\prime \prime} x<0$
Condition For Minima Or
Condition for Minima Value

1) $\frac{d y}{d x}=f^{\prime} x=0$
2) $\frac{d^{2} y}{d x^{2}}=F^{\prime \prime} x>0$

Find maxima and minima

$$
\begin{aligned}
& y=x^{3}-3 x^{2}+20 \\
& \frac{d y}{d x}=\frac{d}{d x}\left(x^{3}-3 x^{2}+20\right) \\
& =3 x^{2}-6 x \\
& x \text { either } 0 \text { (or) } 2 \\
& \frac{d^{2} y}{d x^{2}}=\frac{d^{2}}{d x^{2}}\left(32-\frac{2}{2}+x\right) \\
& =b x-6 \\
& \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& a=3 \quad b=-6 c=0 \\
& -(-b) \pm \sqrt{(-6)^{x}-4 \cdot 3} \\
& =\frac{b \pm \sqrt{3 b-0}}{b} \\
& =\frac{G-6}{b}=\frac{D}{6}=\rho
\end{aligned}
$$

Find the Maximum and minimum values of Function $2 X^{3}+3 X^{2}-12 X-6$

$$
\begin{aligned}
\text { Let } y & =2 x^{3}+3 x^{2}-12 x-b \\
\frac{d y}{d x} & =\frac{d}{d x}\left(2 x^{3}+3 x^{2}-12 x-b\right) \\
& =b x^{2}+b x-12 \\
\frac{d^{2} y}{d x^{2}} & =\frac{d^{2}}{d x^{2}}\left(b x^{2}+b x-12\right) \\
& =12 x+b
\end{aligned}
$$

The Minimum Value of the Function $=-13$
The Maximum Value of the Function $2 X^{3}+3 X^{2}-12 X-6$

$$
\begin{aligned}
& x=-2 \\
& =9(-2)^{3}+3(-2)^{2}-12(-2)-b=2(-8)+3(4)+2{ }^{2} \\
& =-1 b+12+24-b=14
\end{aligned}
$$

The Maximum Value of the Function $=14$

